If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.25x^2=40
We move all terms to the left:
.25x^2-(40)=0
a = .25; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·.25·(-40)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*.25}=\frac{0-2\sqrt{10}}{0.5} =-\frac{2\sqrt{10}}{0.5} =-\frac{\sqrt{10}}{0.25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*.25}=\frac{0+2\sqrt{10}}{0.5} =\frac{2\sqrt{10}}{0.5} =\frac{\sqrt{10}}{0.25} $
| 6+3q=9+3q | | 3x2xx=96 | | 1/25x^2=40 | | 10q-9q=20 | | 3(3x+5)=9x+15 | | (2x+6)+54+x=180 | | -5p=-2-6p | | (8-3)(8+x)=0 | | 2(h-5)+6=7(h-1)-2(h-6) | | (10x-10)=(7x+5) | | f/3+-12=-13 | | 5x-202=-6x=84 | | 3/5p-7/2=7/5 | | -8+n/3=-2 | | 3.6x=34 | | P=2/q | | 13.2+2.35x=5.65x | | 279x+4⋅3x−8=3x+9 | | 4x+9=12-4x-5=x= | | h+24=90 | | n/4+1=71 | | 5u-4=19 | | 8g-6g-g+2g-g=6 | | 59°+42°+x°=180° | | (z-17)+z=z+42 | | k=8.4-6.3 | | 18n-15n+6n=18 | | 10x-2x=x+14x | | 3+-2u=1 | | 0=-16t^2+30t-5 | | 11w-10w+2w-w=8 | | x-54=46 |